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Operando Raman micro-spectroscopy of the membrane electrode assembly (MEA) of a fully operating hydrogen/oxygen Nafion
electrolyte fuel cell is described. Coarse depth profiling of the fuel cell system enabled appropriate positioning of the micro-
spectroscopy laser focal point for MEA catalytic layer spectroscopy. An increase in the ionomer state-of-hydration, from oxygen
reduction at the cathode, transitions ion exchange sites from the sulfonic acid to the dissociated sulfonate form. Visualization of
density functional theory calculated normal mode eigenvector animations enabled assignments of Nafion side-chain vibrational bands
in terms of the exchange site local symmetry: C; and Czy modes correlate to the sulfonic acid and sulfonate forms respectively.
The gradual transition of the MEA spectra from C; to C3y modes, from the fuel cell open circuit voltage to the short circuit current
respectively, demonstrate the utility of vibrational group mode assignments in terms of exchange site local symmetry.
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Because the active state of a fuel cell catalyst exists only dur-
ing catalysis,! the relevant conditions under which electrocatalysts
should be characterized are with potential control and incorporated
into a membrane electrode assembly (MEA) exposed to flowing reac-
tant streams. In situ methods, applied to practical devices, are termed
“operando”. Although practiced for decades, “operando” first ap-
peared in the literature in 2002.>

Figure 1 schematizes a single cell of a fuel cell housing a
5-layer MEA. MEA catalytic layers are made by deposition of catalyst
inks upon either the carbon gas diffusion layers or directly onto the
membrane.® Catalyst inks are carbon supported catalysts dispersed in
an alcoholic dispersion of solubilized ionomer (e.g., Nafion). Teflon
dispersion is included in cathode inks to lower the surface free energy
and prevent water, formed during oxygen reduction, from condens-
ing. Unsupported metal blacks are used for direct methanol fuel cells.
Methods for MEA preparation have been reviewed.*

Our first approach to realistic evaluation of catalysts was our de-
position of direct methanol fuel cell catalyst inks onto glassy carbon
rotating disk electrodes.>% Operando infrared (IR) spectroscopy of fuel
cells was introduced by Fan et al. using a CaF, windowed fuel cell
installed within a Harrick diffuse reflectance sample compartment.’
This was followed by operando X-ray absorption spectroscopy (XAS)
of hydrogen air fuel cells initiated by Viswananthan et al.® and lig-
uid feed direct methanol fuel cells by Stoupin et al.'” Details of the
operando XAS cell were published’ and similar versions of this cell
were used by Principe'! and Russell.'> Operando XAS of fuel cells is
now widely practiced.'>"”

A hydrated membrane is essential for fuel cell operation. Operando
IR spectroscopy’'®27 requires stringent control of reactant stream
humidification, flow rate, and cell temperature to prevent condensed
water from overwhelming the IR spectra. Raman micro-spectroscopy,
which is tolerant of condensed water, is complementary to FTIR.

Operando Raman spectroscopy of solid oxide fuel cells has been
reported.”®3" Although there are reports of operando PEM fuel cell
water management/transport studies,?'~*® no potential-dependent data
was provided. This H,/air fuel cell spectroscopy uses density func-
tional theory (DFT) calculated normal mode analysis of the Nafion
side chain and perfluorinated small molecules to correlate variation of
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Nafion vibrational group modes with fuel cell cathode potentials. Wa-
ter formation at the cathode directly impacts the Nafion ion exchange
site local symmetry. This provides a basis for proper assignment of
Nafion vibrational group modes.

Additionally, preliminary results on fuel cell assembly depth pro-
filing show that the Raman laser can penetrate the MEA catalytic
layer. This enabled, for the first time, the profiling of a device struc-
ture from the center of an MEA, through the catalytic layer, and up to
and including the flow field region. This low resolution device profil-
ing enables proper positioning of the laser focal point for study of the
catalytic layer.

Experimental

Molecular modeling calculations.—Unrestricted DFT?’ with
the X3LYP? functional was used for geometry optimizations and
normal mode frequency calculations of (a) hydrated Nafion-[H],
(b) dehydrated Nafion-[H], (c) 2-trifluoromethoxy-perfluoroethane-
2-sulfonate (TPS™), (d) 2-trifluoromethyoxy-perfluoroethane-2-
sulfonic acid (TPSH), (e) triflate, (f) triflic acid, and (g)
di(trifluoromethyl)ether (DTFME) (Fig. 2).

The X3LYP is an extension to the B3LYP* functional provid-
ing more accurate heats of formation. Jaguar 8.7 (Schrodinger Inc.,
Portland, OR) was used with the all-electron 6-311G**++ Pople
triple-g basis set (“**” and “++" denote polarization®” and diffuse*’
basis set functions, respectively). Output files were converted to vi-
brational mode animations using the Maestro graphical user interface
(Schrodinger Inc., New York, NY). Calculations were carried out on
the high performance computing cluster at the University of Texas Rio
Grande Valley with 72 nodes of Dual 2.67 Ghz processors; each node
with 48 GB RAM and 250 GB disk. DFT calculated normal mode
peaks are denoted by superscript (*) (e.g., 983* cm™'). Only normal
modes with normalized intensity above 1% of the largest peak were
selected for Maestro animation viewing.

Non-PGM catalyst preparation.—Non-platinum group (non-
PGM) catalysts were prepared and provided by Barton, et al.*! Briefly,
in their preparative method, Ketjen black 600JD (Akzo Nobel, Ams-
terdamn, Netherlands), iron acetate (0.75 wt% Fe) (Alfa Aesar, Ward
Hill, MA) and melamine (6.3 wt% N) (Alfa Aesar) were heat treated
at 800°C. These catalysts were used as received.
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Figure 1. Single cell fuel cell with Nafion 117 5-layer membrane electrode assembly.

MEA Preparation.—Nafion 117 (Wilmington, DE) was pretreated
by immersing sheets in boiling 8 M nitric acid followed by two hours
in boiling Nanopure™ water. Catalyst inks were prepared by diluting
the catalyst in 5 wt% Nafion ionomer solution (Sigma Aldrich, Mil-
waukee, WI), water, and isopropyl alcohol (Sigma Aldrich). 4 mg/cm?
Pt black (Johnson Matthey, London, UK) and 1.6 mg/cm? non-PGM
catalyst were used as the anode and cathode catalysts, respectively.
Catalyst inks were applied to a 5 cm? area of a sheet of Nafion 117
(E. I. DuPont) immobilized on a heated vacuum table (NuVant Sys-
tems, Inc., Crown Point, IN). Toray carbon paper (200 jum) was used
for the gas diffusion layers. MEAs were initially conditioned by cy-
cling the potential from 200-800 mV in the operando Raman cell
operating at 50°C with humidified H, (50 sccm) and O, (200 sccm)
flowing over the anode and cathode, respectively.

Cell design.—The operando Raman fuel cell design (Fig. 3) is
a modification of the operando IR-XAS cell described by Lewis
et al.?! Briefly, the upper flow field connects to the working elec-
trode and contains an aperture that accommodates a GE 124 fused
quartz window (General Electric). The lower flow field connects to
the counter/reference electrode to which humidified hydrogen is de-
livered. The counter and reference electrodes of the EZstat Pro po-

() (d)

e) é (f) % (g?‘i
Figure 2. Model structures for DFT normal mode analysis. (a) hydrated

Nafion-[H], (b) dehydrated Nafion-[H], (c) TPS™, (d) TPSH, (e) triflate,
(f) triflic acid, and (g) DTFME.

tentiostat/ galvanostat (NuVant Systems Inc., Crown Point, IN 46307)
are shorted together and connected to the counter/reference electrode.
The cell is connected to a gas manifold that delivers the reactant feeds
to the anode and cathode graphite flow fields. The cell is equipped
with heater elements and a thermistor for temperature control. A DB9
connector interfaces the EZstat Pro to the operando cell. The cell
is positioned at the working distance of the microscope objective
(Fig. 3).

Operando Raman spectroscopy.—All operando Raman spectra
were acquired using a WlTec Inc. (Ulm, Germany) Confocal Raman
Microscope (CRM 200). A 488 nm (23 mW) solid state laser (WITec
Inc.) was used as the excitation source, which was coupled into a
Zeiss (Thornwood, NY) microscope via a 50 wm wavelength-specific
single-mode optical fiber. The incident laser beam was focused onto
the sample using a Nikon (Tokyo, Japan) Fluor (10x/0.25, WD: 7.00
mm) objective with a z resolution of 23 wm and confocal volume of
33 wm?3. The Raman backscattered radiation was focused through a
holographic notch filter, onto a 50 wm multimode optical fiber, and
into a 300 mm focal length monochromator (600/mm grating, blazed
at 500 nm). The Raman spectrum was detected via a back-illuminated,
deep-depletion CCD camera (1024 x 128 pixels) operating at —82°C.
Single Raman spectra were acquired for 30s, except that spectra of
the Fe based catalyst under O, conditions were obtained with a 30
second acquisition time and a hardware accumulation of 2s. Confocal
microscope depth profiling was performed with a step size of 50 pm.
Because the confocal volume of the 10x objective is 33 pum?, spectra
are correlated to overlapping layers of the assembly structure as shown
in the Results section.

Prior to obtaining spectra, the cell potential was cycled from 0 to
1200 mV at 50°C with humidified H, (50 sccm) and N, (200 sccm)
fed to the counter/reference and working electrodes, respectively. The
working electrode reactant feed was then switched to humidified O,
(200 sccm). Raman spectra were obtained between 1100 mV and
0 mV and collected in decreasing 100 mV increments. The fuel cell
anode was used as the reference electrode by shorting the counter and
reference electrodes of the potentiostat (EZstat Pro, NuVant Systems,
Crown Point, IN 46307) as described by Gurau et al.*?

Results

Location of optimal focal point for study of catalytic layer.—
Our interest in cathode catalytic layer processes within the operando
cell required determination of the optimal position of the Raman
microscope laser beam focal point. Figure 4 shows a cross sectional
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Figure 3. Left: Exploded view of the operando Raman cell. (1) Top plate, (2) Upper flow field, (3) Membrane electrode assembly, (4) Lower flow field, (5)
Assembly gasket, and (6) Assembly stage. Right: Operando Raman cell in position for confocal Raman microscopy.
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Figure 4. Left: Schematic of MEA installed in the operando spectroscopy fuel cell. Right: Confocal Raman microscope depth profiling spectra of Fe-Ny/C cathode

with humidified O, flow.

schematic of the MEA loaded into the operando cell (Fig. 4, left). The
microscope focal point was varied along the z-axis until the Nafion
spectrum attained a maximum intensity (black spectrum). This is
the “reference” position for additional spectra obtained as the focal
point was sequentially lifted above the reference (Fig. 4, right). This
is “device” depth profiling over four complex regions (membrane,
catalytic layer, gas diffusion layer and graphite flow field region).
The Nafion membrane is a ~178 pm condensed phase that, within
the torques applied to fuel cell (35 in-lbs /8 bolts: 4 in. on edge
flow field blocks), is incompressible. The nevertheless complex optics
for membrane(s) layers is discussed by Peng et al.>' The catalytic
layer is a ~10 pm porous composite layer with optical characteristics
that substantially vary with electrode potential.”> The gas diffusion
layer is a ~200 wm porous carbon paper that is homogenous over a
length scale of microns. The final layer is a dense graphite layer with
millimeter flow field grooves and an aperture to fit a quartz window.
The focal point position (or depth) cannot be directly correlated to
a position within the fuel cell assembly. The z resolution of 23 jum and
confocal volume of 33 wm?, compounded by the physical characteris-
tics of the different layers (e.g., thickness, diffraction, scattering, etc.)
add to Raman signal distortion.>"** Each focal point location (Fig. 4,
Right) yields signal over a bracketed region of the fuel cell assembly.
Fortunately, bracketed regions can be calibrated by knowledge of the
nominal compositions of the device regions (e.g, pure polymer re-
gions, carbon support, gaseous dioxygen, etc.). Gaseous dioxygen is
not observable within the incompressible membrane. At a focal point

of +150 wm (from the reference position), a dioxygen peak emerges
at 1556 cm™~'. Gaseous oxygen resides in the porous cathode layer,
the gas diffusion layer and in the flow field. The oxygen band is not
observed within the Nafion membrane region with detection limits of
1000 ppm).+3-45:¢

Peaks related to the carbon support in the catalytic layer start to
emerge at +100 wm with no attenuation of the Nafion peaks. The
two prominent features of the graphite are the E,, vibration mode at
1600 cm™! and disorder peak (D peak) at 1360 cm™'.*® The D peak,
which arises from an A, breathing mode, is observed at the edges of

graphene planes on clusters smaller than 200 A% The catalytic layer
is rendered ionically conductive by Nafion ionomer originating from
the catalyst ink.?

Our objectives required that we select the highest focal point avail-
able that exhibited dioxygen peaks simultaneously with Nafion peaks.
Based on Figure 4 (Right), we selected 4+ 350 pm above the reference.

Potential-dependent Raman bands.—The polarization curve, ob-
tained with the focal point set at +-350 wm from the reference, (Fig. 5)
shows a current onset at 750 mV (a striking 20-fold improvement over
carbon with no iron-based catalyst).*’” At cathode potentials positive
of 800 mV (Fig. 6) there is no current and thus no oxygen reduction re-
action (ORR). Figure 6 compares potential-dependent Raman spectra

°The expected solubility of oxygen within the membrane (50°C and ~30 water
molecules/exchange site) is 8.9 ppm.
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Figure 5. Polarization curve obtained in the operando spectroscopy fuel cell.
Pt anode (humidified Hy): Fe-Ny/C cathode (humidified O5).

(left) with transmission IR spectra of fully dehydrated (blue), partially
hydrated (purple) and fully hydrated (red) Nafion. The Raman spectra
in the ORR inactive region (positive of 800 mV) exhibit a band at
910 cm™! that is also observed in the spectrum of dehydrated Nafion
(blue)). This mode has been established to be dominated by motions
of the Nafion exchange site in the sulfonic acid form that has no local
symmetry (C).?248-50
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At potentials negative of 700 mV, Raman bands at 1066 cm™! and

969 cm~! emerge. These bands, also observed in the hydrated Nafion
(red) IR spectrum, are the C3y, yr and C;y, 1r group modes respectively.
These group modes are consequent of a dissociated Nafion exchange
site (sulfonate form) with Csy local symmetry.?>48:31-53

C; normal mode eigenvector animation snapshots.—The dehy-
drated Nafion spectrum (blue) features bands at 1414 cm™! and 910
cm™!. These are group modes that have motional participation of the
exchange group in the sulfonic acid form (C; local symmetry). Eigen-
vector animation extrema screenshots (Fig. 7, top panels) provide de-
tails of the vibrational motions with the dominant motions within solid
circles and secondary contributions within dotted circles. These high
and low frequency bands (C, yr and C, 1, respectively) correspond to
group modes that involve the side-chain functional group contributions
(e.g., COC-A, -CF;, exchange site, etc.). The C, yr and C; ¢ group
modes are both dominated by sulfonic acid stretching (asymmetric and
symmetric, respectively) with secondary contributions from COC-A
stretching (asymmetric and symmetric, respectively). The lower pan-
els show eigenvector extrema snapshots of molecules that make up
the pure modes contributing to the C; group modes, along with asso-
ciated calculated normal mode frequencies. The mirrored similarities
of dehydrated Nafion group modes and side chain pure modes is ev-
ident (Fig. 7). Comparison of the pure modes (bottom panels) with
the calculated normal modes (top panels) correctly show that the pure
mode frequencies contributing to the C; r are on average substan-
tially higher than the pure modes contributing to the C; f, in support
of the assignments. The relationships between the pure modes and the
calculated normal modes (actually group modes) are more explicit by
visualization of the video animations (Supplemental Material (Figs.
S6, 8, 11-12, 14-17). A similar analysis for C3y peaks that emerge as
the fuel cell potential is decreased follows. All of the assignments are
summarized in Table 1.
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Figure 6. Left: Potential dependent Raman spectra of Fe-Ny/C cathode catalyst with O, at cathode; H; at the anode. Right: Transmission spectra of Nafion 212.
Fully dehydrated (top), partially dehydrated (middle) and fully hydrated (bottom). Group theory labels refer to exchange site local symmetry.
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Figure 7. Extrema snapshots of normal mode eigenvector animations of dehydrated Nafion-[H], 2-trifluoromethyoxy-perfluoroethane-2-sulfonic acid (TPSH),
triflic acid, and di(trifluoromethyl)ether (DTFME). Dominant and secondary normal mode contributions identified by solid and dotted lines respectively.

C;y normal mode eigenvector animation snapshots.—The fully
hydrated Nafion spectrum (red) features bands at 1061 cm™! and
969 cm™! that correspond to the sulfonate form (Csy local symme-
try) of the exchange site. Eigenvector animation extrema screenshots
(Fig. 8, top panels) provide details of the vibrational motions. These
high (Csyur) and low frequency (Csyr) bands correspond to group
modes that involve the same side-chain functional group contributors.
Figure 8 depicts extrema of the C3y normal mode eigenvector anima-
tions of hydrated Nafion and Nafion side chain composition analog
structures. The lower panels show extrema snapshots of molecules
that make up pure modes contributing to the Csy group modes along
with associated calculated normal mode frequencies. Both the Csy
and Csyyr modes are group modes with participation of a dissociated
sulfonate group with C3y symmetry. The lower frequency 969 cm™!

(Csvy,Lr) is dominated by a symmetric sulfonate stretch. (Fig. 8) The
higher frequency 1061 cm™! (Csvur) has a major contribution from
COC-A.

Historically, 969 cm~! was ascribed solely to the COC v,,, and the
1061 cm~! was ascribed solely to the SO;~! v, > In contrast, normal
mode analyses of Nafion, DTFME, and triflate show why these bands
cannot be properly assigned as single function group modes. The mir-
rored similarities of hydrated Nafion group modes, and its side chain
pure modes, are evident in extrema snapshots (Fig. 8). As expected,
our assignments are in line with the DTFME COC v, and triflate
SO;~! v, modes at 1136* cm™! and 981* cm™!, respectively. Com-
parison of the pure modes (bottom panels) with the calculated normal
modes (top panels) correctly show that the pure mode frequencies
contributing to the Csyr are on average substantially higher than the

TableI. Group mode assignments, DFT calculated normal modes, Transmission IR, Raman bands for hydrated Nafion-[H], dehydrated Nafion-[H],

TPS—, TPSH, triflate, triflic acid and DTFME.

Local symmetry Group mode assignment DFT (cm™')  Transmission (cm™')  Raman (cm™!)  Suppl. material
Hydrated Nafion-[H] CF3 §,, COC-B §;, COC-A 3,  738* 730 Video S1
BB 883* 806 Video S2
CsvLF SO;7! v, COC-A vy 983* 969 969 Video S3
CavHF COC-A vy, SO3 71 vg 1059* 1061 1066 Video S4
Dehydrated Nafion-[H] CF3 §,, COC-B p;, COC-A p;  731* 730 Video S5
CiLF SO3H vg, COC-A vy 786* 910 910 Video S6
COC(B) w, BB 820* 806 Video S7
Ci.urF SO3H vy, COC-A vy 1405* 1414 Video S8
TPS™ CsvLF SO37 ! v, COC vy 972* Video S9
CavhF COC vy, SO37! v 1075* Video S10
TPSH CiLF SO3H vg, COC vy 766* Video S11
Ciur SO3H vy, COC vyg 1400* Video S12
Pure Modes
Triflate Csv SO; 7! v 981* Video S13
Triflic Acid C SO3H vy 795* Video S14
C SO3H vy 1398* Video S15
DTFME COC vy 1136* Video S16
COC vy 1256* Video S17

Symmetric stretching, vs; Asymmetric stretching, v,s; Wagging, ; Bending, 8¢; Umbrella bending, 8,,; Rocking, p;; Backbone, BB; Calculated value*
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Figure 8. Extrema snapshots of normal mode eigenvector animations of hydrated Nafion-[H], 2-trifluoromethyoxy-perfluoroethane-2-sulfonate (TPS—), triflate,
and di(trifluoromethyl)ether (DOTFME). Dominant and secondary normal mode contributions identified by solid and dotted lines respectively.

pure modes contributing to the Csyr, in further support of the assign-
ments. The relationships between pure modes and calculated normal
modes (actually group modes) are more easily seen by visualization
of the full animations, which are available as Supplemental Material.
All of the assignments are summarized in Table 1.

Intermediate states-of-hydration show coexistence of the C3y and
C; modes (Fig. 6 purple spectrum). Both C3y and C; modes exist in
the Raman spectra between 900 and 700 mV, consistent with the onset
current (Fig. 5) and intermediate hydration. Thus C; and C3;y modes
together are indicators of membrane state-of-hydration at intermediate
and extreme levels. This is the most important revelation of Figure 6.

Nafion Raman bands at 730 cm™' and 806 cm~'.—Prior to this
work, the bands at 730 cm~! and 806 cm™! had not been assigned by
visualization of normal mode eigenvector animations. Although these
Raman bands appear at all potentials (Fig. 6, left), there are band shape
and intensity transitions concurrent with the onset of water formation
(Fig. 6, dotted line region). Eigenvector animations (Figs. S1-2, 5,
7) reveal a pair of near degenerate normal modes that make up the
730 cm™! band and another normal mode pair contributing to the
806 cm™! band. While both observed bands are assigned by Peng et
al.* as “due to Teflon skeleton structure”, the eigenvector animations
enable a more detailed set of assignments.

The animations show that the 731* cm™! (sulfonic acid side-chain
normal mode analysis) and the 738* cm™' (sulfonate side-chain nor-
mal mode analysis) both contribute to the 730 cm™' band (Table I)
to extents that depend on the state-of-hydration. Above 900 mV, the
mode corresponding to the dehydrated exchange site dominates con-
tributions (side-chain rocking) to the 730 cm™! band. Between 900 and
700 mV, modes due to the dehydrated and hydrated states contribute to
the band as the cathode initiates water formation. Below 700 mV, the
modes associated with the dehydrated states are entirely supplanted
by modes calculated from the hydrated state of the exchange site. The
hydrated form of the exchange site becomes the dominant contributor
(side-chain bending) to the 730 cm™' band. Thus, there is a transition
in the 730 cm™! band as the membrane state of hydration increases.
The band shape changes from a side-chain rocking dehydrated mode
to a side-chain bending hydrated mode (low intensity, broad peaks to
narrower, sharp peaks). The overall changes in modes are indirectly
related to exchange site local symmetry because the animations show

little contribution of exchange site motions to the modes. However
high and low states of hydration do have substantial impact on the
overall morphology of the membrane (e.g., a three phase model,>
core-shell structure,’’-® rod-like model,* etc.).

Similarly, normal mode animations confirm that the 820" cm™
(sulfonic acid form) and 883* cm™! (sulfonate form) normal modes
contribute to the 806 cm™' band (Table I). Above 900 mV, the
820* cm™! mode dominates contributions (side-chain/backbone) to
the 806 cm~! band. Between 900 and 700 mV, the 820* cm™! and
883* cm~! modes co-contribute to the 806 cm~! band as the cath-
ode initiates water formation. Below 700 mV, the 820* cm™! mode is
entirely supplanted by the 883* cm™! mode. In summary, as the mem-
brane becomes hydrated, the dominant contributor to the 806 cm™!
band gradually shifts from the calculated 820* cm™! to the 883* cm™!
normal modes. The band shape changes (although not as distinctly as
in the 730 cm™! band) from a side-chain/backbone dehydrated mode
to a backbone hydrated mode.

Raman bands (560 — 631 cm~!).—Figure 6 shows low intensity
bands at 564 cm™!, 600 cm™!, and 635 cm™!. To facilitate analysis,
Figure 9 shows operando spectra with cathode catalytic layers of: (left)
Fe-N,/C (O, flow), (middle) C/(no Fe-N,/C) (O, flow), and (right) Fe-
N,/C (N, flow). Johnson Matthey Pt/C was used at the MEA anode.
The absence of peak frequency potential dependence (Stark tuning)
justifies signal averaging of the left, middle and right panel spectra.
“Average” spectra are shown in separate panels below their respective
source panels.

The peak at 564 cm™!, attributed to Fe-O, stretching modes,5*-%* is
present at all cell potentials under O, flow (left). It is non-discernable
from the background under N, flow (right). There is total absence
of intensity at 564 cm~! when a carbon cathode is under O, flow
(middle). This is totally consistent with the presence of iron in the
catalytic layer. However, the absence of Stark tuning of the Fe-O,
stretching modes, and the appearance of the peak at potentials from
open circuit to short circuit currents is unexpected for a site associated
with the oxygen reduction current onset.

A literature search revealed no reports of Fe-O, stretching modes
within the 600 cm™' to 635 cm™' range. However, a Hester and
Krishnan® report on vibrational spectra of divalent metals in molten
sulfates elucidates an analogy between metal complexation in molten
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Figure 9. Potential dependent Raman spectra, from 650 to 550 cm ™, of the
Fe-Ny/C cathode catalyst operating under O, (left), C (no Fe) cathode catalyst
operating under O, (middle), and Fe-Ny/C cathode catalyst operating under
N; (right).

sulfates and that of divalent ions with the exchange site of dehydrated
Nafion. We reported that divalent ions in dehydrated Nafion bind
with C3y symmetry*®*-" to sulfonate oxygens. Hester and Krishnan
confirmed Csy binding of divalent metals to dry molten sulfonates.
Buzgar et al.% further support Csy binding of transition metals to
sulfonates in the wavenumber region 600 cm™! to 635 cm~!. The
above references, a report by Brogan et al.%¢ on Pt-O vibrational
modes and the high performance of fuel cell of this study suggests
that other metal oxygen interactions may be contributing to vibrational
spectral features in Figures 6 and 9. We recently reported on the direct
interaction of Pt with the Nafion sulfonate group?? and the emergence
of Nafion bands at similar operando spectroscopy fuel cell potentials
in Pt cathode fuel cells.'® The possibility of a Pt contaminant in the
as-received Fe-N,/C catalyst prompted us to request a Pt analysis
by Robertson Microlit Laboratories, Ledgewood, NJ. The analysis
showed 13.4 ppm Pt in the as-received catalyst.¢

This section points out the need for high resolution operando spec-
troscopy of Pt and non-PGM catalysts within the 550 — 650 cm™!
region. Previous reports on molten sulfate Raman spectroscopy that
complement our findings that Nafion side-chain group modes are best
categorized in terms of local symmetry>® provide impetus for these
further studies.

4The original vial with remaining catalyst was sent for ICP-MS analysis.
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Conclusions

Hydrogen/oxygen fuel cell operando Raman spectroscopy shows
the potential-dependent spectroscopy of the Nafion ionomer within
the MEA cathode catalytic layer: The ionomer state-of-hydration in-
creases as the fuel cell voltage decreases. Density functional theory
calculated normal mode analysis, of the Nafion repeat unit and side-
chain molecular fragment analogs, provides eigenvector animations
that enable Nafion band assignments in terms of the exchange site
local symmetry. Dehydrated Nafion features C; modes that are as-
sociated with the sulfonic acid form of the exchange site. Hydrated
Nafion features C3y modes that are associated with the sulfonate form.
Atintermediate stages of hydration the C; and C3y modes coexist. The
study highlights a less understood wavenumber region between 550
and 650 cm™!.

The proper positioning of the Raman microscope laser focal point
is determined by a coarse depth profiling of the Raman fuel cell that
is calibrated by Raman peaks associated with materials that comprise
layered regions of the fuel cell device. This technique can advance the
fundamental understanding of the processes such as oxygen reduc-
tion reaction (ORR), carbon corrosion, and catalysis process of ORR
in PEMFCs catalyzed by Pt or non-PGM catalysts operating under
realistic conditions.
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